A 4'-phosphopantetheinyl transferase mediates non-ribosomal peptide synthetase activation in Aspergillus fumigatus.
نویسندگان
چکیده
Aspergillus fumigatus is a significant human pathogen. Non-ribosomal peptide (NRP) synthesis is thought to be responsible for a significant proportion of toxin and siderophore production in the organism. Furthermore, it has been shown that 4'-phosphopantetheinylation is required for the activation of key enzymes involved in non-ribosomal peptide synthesis in other species. Here we report the cloning, recombinant expression and functional characterisation of a 4'-phosphopantetheinyl transferase from A. fumigatus and the identification of an atypical NRP synthetase (Afpes1), spanning 14.3 kb. Phylogenetic analysis has shown that the NRP synthetase exhibits greatest identity to NRP synthetases from Metarhizium anisolpiae (PesA) and Alternaria brassicae (AbrePsy1). Northern hybridisation and RT-PCR analysis have confirmed that both genes are expressed in A. fumigatus. A 120 kDa fragment of the A. fumigatus NRP synthetase, containing a putative thiolation domain, was cloned and expressed in the baculovirus expression system. Detection of a 4'-phosphopantetheinylated peptide (SFSAMK) from this protein, by MALDI-TOF mass spectrometric analysis after coincubation of the 4'-phosphopantetheinyl transferase with the recombinant NRP synthetase fragment and acetyl CoA, confirms that it is competent to play a role in NRP synthetase activation in A. fumigatus. The 4'-phosphopantetheinyl transferase also activates, by 4'-phosphopantetheinylation, recombinant alpha-aminoadipate reductase (Lys2p) from Candida albicans, a key enzyme involved in lysine biosynthesis.
منابع مشابه
Nonribosomal peptide synthesis in Aspergillus fumigatus and other fungi.
In fungi, nonribosomal peptide synthetases (NRP synthetases) are large multi-functional enzymes containing adenylation, thiolation (or peptidyl carrier protein, PCP) and condensation domains. These enzymes are often encoded within gene clusters. Multiple NRP synthetase ORFs have also been identified in fungi (14 in Aspergillus fumigatus). LeaA, a methyltransferase, is involved in secondary meta...
متن کاملReview Nonribosomal peptide synthesis in Aspergillus fumigatus and other fungi
In fungi, nonribosomal peptide synthetases (NRP synthetases) are large multi-functional enzymes containing adenylation, thiolation (or peptidyl carrier protein, PCP) and condensation domains. These enzymes are often encoded within gene clusters. Multiple NRP synthetase ORFs have also been identified in fungi (14 in Aspergillus fumigatus). LeaA, a methyltransferase, is involved in secondary meta...
متن کاملThe Sfp-Type 4′-Phosphopantetheinyl Transferase Ppt1 of Fusarium fujikuroi Controls Development, Secondary Metabolism and Pathogenicity
The heterothallic ascomycete Fusarium fujikuroi is a notorious rice pathogen causing super-elongation of plants due to the production of terpene-derived gibberellic acids (GAs) that function as natural plant hormones. Additionally, F. fujikuroi is able to produce a variety of polyketide- and non-ribosomal peptide-derived metabolites such as bikaverins, fusarubins and fusarins as well as metabol...
متن کاملCrystal structure of the surfactin synthetase-activating enzyme sfp: a prototype of the 4'-phosphopantetheinyl transferase superfamily.
The Bacillus subtilis Sfp protein activates the peptidyl carrier protein (PCP) domains of surfactin synthetase by transferring the 4'-phosphopantetheinyl moiety of coenzyme A (CoA) to a serine residue conserved in all PCPs. Its wide PCP substrate spectrum renders Sfp a biotechnologically valuable enzyme for use in combinatorial non-ribosomal peptide synthesis. The structure of the Sfp-CoA compl...
متن کاملCharacterisation of the Candida albicans Phosphopantetheinyl Transferase Ppt2 as a Potential Antifungal Drug Target
Antifungal drugs acting via new mechanisms of action are urgently needed to combat the increasing numbers of severe fungal infections caused by pathogens such as Candida albicans. The phosphopantetheinyl transferase of Aspergillus fumigatus, encoded by the essential gene pptB, has previously been identified as a potential antifungal target. This study investigated the function of its orthologue...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chembiochem : a European journal of chemical biology
دوره 6 4 شماره
صفحات -
تاریخ انتشار 2005